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Abstract. The Eocene-Oligocene Transition (EOT), approximately 34 Ma ago, is an interval of great 10 

interest in Earth’s climate history, due to the inception of the Antarctic ice sheet and major global 

cooling at the time. Climate simulations of the transition are needed to help us interpret proxy data, test 

mechanistic hypotheses for the transition, and determine the climate sensitivity at the time. However, 

model studies of the EOT thus far typically employ control states designed for a different time period, 

or ocean resolution on the order of 3°. Here we developed a new higher resolution paleoclimate model 15 

configuration based on the GFDL CM2.1 climate model adapted to a late Eocene (38 Ma) 

paleogeography reconstruction. We employ an ocean resolution of 1° x 1.5°, and an atmosphere 

resolution of 3° x 3.75°. This represents a significant step forward in resolving the ocean geography, 

gateways and circulation in a coupled climate model of this period. We simulate the model under 3 

different levels of CO2; 400, 800 and 1600 ppm. The model exhibits relatively high sensitivity to CO2 20 

compared with other recent model studies, and thus can capture the expected Eocene high latitude 

warmth within observed estimates of atmospheric CO2. However, the model does not capture the low 

meridional temperature gradient seen in proxies. Equatorial sea surface temperatures are too high in the 

model (30-37°C) compared with observations (max 32°C), though observations are lacking in the 

warmest regions of the western Pacific. The model exhibits robust bipolar sinking in the North Pacific 25 

and Southern Ocean, which persists under all levels of CO2. North Atlantic salinities are too fresh to 

permit sinking (25-30 psu), due to surface transport from the very fresh Arctic (~20 psu), whose 
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salinities approximately agree with Eocene proxy estimates. North Atlantic salinity increases by 1-2 psu 

when CO2 is halved, and similarly freshens when CO2 is doubled, due to changes in the hydrological 

cycle. 

1 Introduction 

The Eocene-Oligocene Transition (EOT), approximately 34 Ma ago, was one of the major climate 5 

transitions in the Cenozoic Era. The EOT marks the shift from the so-called ‘greenhouse world’ to the 

‘icehouse world’, during which time the first semi-permanent ice sheets formed on Antarctica, and 

major changes occurred in flora and fauna across the globe reflecting a shift to colder or drier conditions 

(Coxall and Pearson, 2007; Dupont-Nivet et al., 2007; Miller et al., 1991). Yet the causes of the 

transition and its global impacts are still not fully understood, particularly regarding role of the ocean 10 

circulation. The leading theories of what caused the transition are: a decline in atmospheric CO2 below a 

critical threshold (DeConto and Pollard, 2003), and the opening of Southern Ocean gateways causing 

thermal isolation of Antarctica (Kennett, 1977); with orbital forcing playing a key role as trigger and 

pacemaker of ice growth on Antarctica (Coxall et al., 2005).  

 15 

A long-term decline in atmospheric CO2 has been found to be a major driver of Eocene cooling 

(Anagnostou et al., 2016), and a plausible trigger of the EOT glaciation (DeConto and Pollard, 2003). 

This mechanism is appealing in its simplicity, however the threshold required to trigger the glaciation is 

uncertain. Gasson et al. (2014) found the glaciation threshold to be within a range of 560 to 920 ppm 

using an intercomparison of late Eocene climate models to force an ice sheet model. This large range 20 

was primarily due to the spread in climate sensitivity of the models, of between 2.5°C and 4.1°C per 

doubling of CO2 under modern conditions. Observations of CO2 at the EOT are similarly uncertain, 

with estimates from carbonate microfossils providing an uncertainty range of 450 to 1500 ppm with a 

central estimate of 760 ppm  (Pearson et al., 2009). Strong CO2 forcing has had considerable success in 

explaining the very warm climate of the early Eocene (Huber and Caballero, 2011). The subsequent 25 

increase in seasonality and meridional temperature gradient from the early to late Eocene supports the 

idea that CO2 forcing had a primary role in Eocene to Oligocene climate change (Eldrett et al., 2009).  
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The evolution of the oceanic meridional overturning circulation (MOC) around the EOT remains a topic 

of debate. Global compilations of benthic foraminiferal stable isotopes of d13C and d18O have been 

interpreted to indicate that the deep ocean was largely homogeneous during the early to middle Eocene 

(Cramer et al., 2009). This has been used to infer a predominance of southern hemisphere high-latitude 5 

deep-water formation. Subsequent divergence of inter-basin benthic isotopic gradients creating oceanic 

heterogeneity has been linked to onset of North Atlantic intermediate water formation in the late 

Eocene, and the beginning of a more mature North Atlantic deep water formation in the early Oligocene 

(Borrelli et al., 2014). In those studies, the proposed forcing mechanism of North Atlantic deep water is 

the opening of Southern Ocean gateways. This rests on the modern-climate interpretation that 10 

mechanical mixing and wind-driven upwelling in the ACC are major drivers of the Atlantic MOC 

(Toggweiler and Samuels, 1995). Recent modelling suggests that deepening of the Greenland-Scotland 

Ridge may be a trigger for the onset of North Atlantic sinking (Abelson and Erez, 2017), and the 

resulting changes in heat transport could also have important effects on the period’s climate. 

 15 

In contrast to the North Atlantic sinking hypothesis, Nd isotope distributions suggest that North Pacific 

sinking occurred all the way from the Cretaceous through to the Miocene (Ferreira et al., 2018). Nd 

tracer-enabled ocean simulations that are able to reproduce the observed pattern of Eocene Nd data have 

vigorous bipolar Pacific sinking, with southern rather than North Pacific bottom water dominating 

(Thomas et al., 2014). Furthermore, idealized GCM simulations show that salt advection feedbacks 20 

create a competition between North Pacific and North Atlantic deep water formation (Wolfe and Cessi, 

2014), so that the onset of North Atlantic sinking may imply a shutdown of North Pacific sinking and 

vice versa. It remains unclear if such a switch occurred at the EOT, and its potential triggers have not 

been fully explored. 

 25 

Modelling studies investigating the effect of the Antarctic Circumpolar Current (ACC) on global 

climate have found that opening the Drake Passage leads to cooling of the Southern Ocean and a 

reduction in poleward heat transport towards Antarctica (Cox, 1989; Sijp et al., 2009; Sijp and England, 
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2004). These studies used either ocean-only or intermediate complexity climate models lacking 

dynamic atmospheric feedbacks. The Antarctic response of fully-coupled climate models to Drake 

Passage opening is less clear, since the opening of a circumpolar gateway does not guarantee a strong 

Antarctic Circumpolar Current under late Eocene paleogeography (Zhang et al., 2010), or under the 

high CO2 (Lefebvre et al., 2012) prevalent in the late Eocene. Furthermore, there is uncertainty of up to 5 

tens of millions of years over when a deep gateway first existed in Drake Passage (Barker et al., 2007; 

Livermore et al., 2005), so that the inception of the ACC cannot be easily pinpointed to the EOT. The 

opening of a deep Tasman Seaway has also been suggested to occur around the EOT and cause 

Antarctic glaciation (Stickley et al., 2004). A model study of this opening found that the gateway 

change had a limited effect on Antarctic surface climate (Sijp et al., 2011). However, the gateway 10 

change may explain ~3°C of deep ocean cooling (Sijp et al., 2014), in agreement with late Eocene 

cooling found in deep sea foraminifera (Bohaty et al., 2012). Part of the CO2 decline at the EOT may 

have been caused by the opening of Southern Ocean gateways (Elsworth et al., 2017), due to feedbacks 

in silicate weathering. This presents a possible way to reconcile the CO2 forcing and gateway 

hypotheses. 15 

 

A common shortcoming of previous EOT simulations is an unrealistic representation of topography (by 

‘topography’ we mean both land topography and ocean bathymetry). Many studies investigating 

gateway effects have used modern topography for their control simulation (Elsworth et al., 2017; 

England et al., 2017; Fyke et al., 2015; Sijp et al., 2009; Yang et al., 2014) and created EOT-like 20 

perturbations by closing Drake Passage and/or opening the Panama Seaway. While this method of 

changing basin geometry is appealing in that it illuminates specific gateway effects, it implicitly ignores 

several features of the late Eocene or early Oligocene paleogeography that are potentially crucial to the 

ocean circulation. These include particularly the closed Pacific-Arctic Bering Sea seaway, the narrower 

Atlantic Basin, the shallow connections between the Atlantic and the Arctic, and the connections of the 25 

Tethys Ocean with the Indian and Arctic Oceans (Figure 1). Other modelling studies of the EOT have 

been configured with early Eocene (~55 Ma) paleogeography. These have particularly focused on the 

effects of changing CO2 forcing from the Eocene to the Oligocene (Eldrett et al., 2009; Liu et al., 2009), 
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the impact of an ice sheet on the atmosphere and ocean circulation (Goldner et al., 2013, 2014), and the 

impact of opening Southern Ocean gateways (Goldner et al., 2014). While early Eocene topography is a 

much closer starting point to late Eocene topography than modern, it does not capture the subsequent 

~20 Ma of tectonic evolution. This includes the gradual opening of the Tasman Gateway and Drake 

Passage, and the widening of the Atlantic. 5 

 

Some recent climate model studies have used reconstructions of late Eocene and early Oligocene 

topography for their control runs (Kennedy et al., 2015; Ladant et al., 2014; Lefebvre et al., 2012; Lunt 

et al., 2016; Zhang et al., 2010). Kennedy et al. (2015) found that when an ice sheet is placed over 

Antarctica, the Pacific sector of the Southern Ocean surface warms significantly when the Tasman 10 

Seaway is constricted as in the late Eocene, whereas when the Tasman Seaway is wider as in the early 

Oligocene, there is instead a weak cooling. These results contrast with Goldner et al. (2014), who found 

a strong cooling of the Southern Ocean in response to Antarctic glaciation, albeit with an early Eocene 

paleogeography. Thus, there remains uncertainty over whether the opening of Southern Ocean gateways 

caused major cooling, or whether the glaciation itself was the primary driver of Southern Ocean 15 

temperature change.  

 

Model studies of the EOT, including those mentioned above, generally employ very low - typically 3° - 

horizontal ocean resolution. This is often a necessity of computational constraints, since the deep ocean 

takes thousands of years to equilibrate (Danabasoglu et al., 1996). Furthermore, uncertainties in the 20 

reconstructed paleogeography often place limitations on the fidelity of the relevant topographic features. 

We are interested in improving the ocean resolution for two reasons. First, the Arakawa B-grid used 

ubiquitously in paleoclimate model studies requires narrow ocean straits to be at least 2 grid cells wide, 

in order to have a non-zero velocity grid point. If a model uses 3° resolution, then the minimum width 

of a strait is 6°, corresponding to 670 km in the meridional direction. In the zonal direction, 6° of 25 

distance varies from 670 km at the equator to 330 km at 60° latitude. These distances are large enough 

that key EOT ocean gateways, such as Drake Passage and Arctic gateways will hardly be resolved. 

Second, there is evidence that gateway effects are enhanced at higher resolution (Viebahn et al., 2016), 
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especially in controlling the heat transport of boundary currents. For example, moving from 1° to 0.25° 

(eddy-permitting) resolution in the modern-day climate results in an enhanced western boundary current 

heat transport (Delworth et al., 2012), and this effect can cause substantially lower Arctic sea ice 

coverage (Hutchinson et al., 2015; Kirtman et al., 2012). Moving from 3° to 1° ocean resolution, while 

still not permitting eddies, would improve the representation of boundary currents and their associated 5 

impacts on gateway transitions. 

 

This study presents a new fully-coupled climate simulation of the late Eocene using order 1° ocean 

resolution and a state-of-the-art paleotopographic reconstruction. We apply the late Eocene (38 Ma) 

reconstruction of Baatsen et al. (2016) to generate topography for the GFDL CM2.1 model, as shown in 10 

Figure 1. This ensures that global tectonic evolution relevant to the late Eocene is included, and any 

future perturbations to ocean gateways or other boundary conditions are referenced to a control state 

that is specifically designed for the late Eocene. Within this framework, we explore the climate 

sensitivity to CO2 perturbations, namely using 400, 800 and 1600 ppm (approximately 1.4x, 2.9x and 

5.7x preindustrial CO2 respectively). We also explore the sensitivity to changing the vertical diffusivity 15 

from the standard Bryan-Lewis scheme to a tidal-mixing scheme where mixing is set to a constant 

background value and then enhanced in the vicinity of rough topography. We examine the impact of 

these changes on the oceanic MOC and global climate.  

2 Model Description 

2.1 Model Components 20 

This study uses a modified version of the coupled climate model GFDL CM2.1 (Delworth et al., 2006), 

using boundary conditions for the late Eocene. The ocean component is updated to the modular ocean 

model (MOM) version 5.1.0, while the other components of the model are the same as in CM2.1, 

namely Atmosphere Model 2, Land Model 2 and the Sea Ice Simulator. In the ocean and sea ice 

components, the horizontal grid is modified to have a resolution of 1° latitude x 1.5° longitude. We use 25 

a tripolar grid as shown in Figure 7 of Murray (1996), with a regular latitude-longitude mesh south of 
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65°N, and a transition to a bipolar Arctic grid north of 65°N. The poles then lie over North America and 

Siberia to avoid convergence of meridians in the Arctic Ocean. This enables the model to simulate 

Arctic Ocean velocities without damping in the vicinity of the North Pole. Unlike in CM2.1, there is no 

refinement of the latitudinal grid spacing in the tropics. The ocean retains the original 50 vertical levels 

with the same grid spacing as in CM2.1. The atmospheric horizontal grid resolution is 3° x 3.75°, with 5 

24 vertical levels. This atmosphere grid is identical to that used in CM2Mc (Galbraith et al., 2010). This 

choice of grid resolutions gives good load balancing between the atmosphere and ocean components, 

while enabling better resolution of coastlines and straits than most existing Eocene models (~3° ocean 

resolution). 

 10 

The topography is adapted to our model grid using the late Eocene (38 Ma) reconstruction of Baatsen et 

al., (2016). Manual adjustments were made to the topography to ensure that all straits are at least 2 grid 

cells wide, so that they have corresponding velocity grid points, and no ocean grid cell is isolated. The 

resulting ocean bathymetry is shown in Figure 1a. In the atmosphere, the topography is interpolated 

onto the horizontal grid and then smoothed using a 3-point mean filter to ensure a smoother interaction 15 

with the wind field. The resulting topography is shown in Figure 1b. Vegetation types are based on a 

dataset based on Sewall et al. (2000), with modifications where data are available from Thorn and 

DeConto (2006); Utescher and Mosbrugger (2007); and Gomes Rodrigues et al. (2012). The Sewall et 

al. (2000) dataset was originally configured for the CESM plant functional types, and we have adapted 

these to the corresponding vegetation type in CM2.1. The river runoff is determined by a relocation 20 

map, where each land point is assigned a corresponding coastal location for returning runoff to the 

ocean. This relocation map was determined by a downslope relocation algorithm from the model 

topography. Aerosol forcing was taken from the Eocene (55 Ma) reconstruction of Herold et al. (2014), 

and adapted to our model’s input types. 

2.2 Vertical Mixing Scheme 25 

We use a simplified version of the tidal mixing scheme of Simmons et al. (2004). The CM2.1 code 

distribution provides a heterogeneous distribution of seafloor roughness amplitude based on high 
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resolution maps of the modern seafloor. We set this to be uniform for simplicity, since estimating the 

late Eocene seafloor roughness is not straightforward. We thus calculate an average roughness 

amplitude of 210.512 m (the h parameter from Eq. (1) of Simmons et al. 2004), and set a background 

diffusivity of 1.0 x 10-5 m2 s-1. In parallel we also simulate the model using the standard Bryan-Lewis 

diffusivity in CM2.1, commonly used in deep time paleoclimate studies (e.g. Lunt et al. 2012). We 5 

prefer a bottom roughness mixing scheme to Bryan-Lewis, since the Bryan-Lewis scheme is 

specifically tuned to modern observations of mixing which are in turn dependent on bathymetry. These 

mixing rates may be different in deep time paleoclimates. Using the tidal-mixing scheme, the structure 

of the thermocline is thus able to adjust to the altered geography and different climate conditions of the 

Eocene.  10 

2.3 Initial Conditions and Spinup 

The initial conditions of the ocean model are configured to a modified version of the DeepMIP 

experimental design (Lunt et al., 2017). The temperature and salinity are set to the following profiles: 

 

T [°C] = (5000 – z) / 5000 * 20 cos (f) + 10 ;   if z £ 5000 m. 15 

            = 10 ;   if z > 5000 m. 

S [psu] = 35.0 

 

where f is latitude, z is depth of the ocean (metres below surface – positive downwards). 

The model is run at three different levels of CO2: 400, 800 and 1600 ppm, where 800 ppm is deemed as 20 

the control simulation. The atmosphere and land surface components are initialised from a previous test 

simulation.  

 

We used the following procedure to spin up the model simulations: 

1. The model is run in coupled mode for 50 years.  25 

2. The last 10 years of this coupled simulation are used to generate surface boundary conditions for 

an ocean and sea ice only simulation. 
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3. The model is run in ocean and sea ice only model for 500 years, using a 10-year repeating 

pattern of forcing based on the CORE protocol (Griffies et al., 2009). During this simulation, we 

doubled the ocean tracer time step with respect to the momentum time step.  

4. The resulting ocean state is used to re-initialise step 1. 

5. After 6 cycles of the above (i.e. a total of 3300 model years), the simulation was continued in 5 

fully-coupled mode (with no acceleration of tracers) for a further 3200 years.  

 

In order to assess the robustness of this acceleration method, we also ran the control simulation from the 

same initial conditions for 1000 years in coupled mode only. This coupled-only simulation yielded an 

ocean state that was very similar in key metrics (i.e. temperature, salinity, age tracer) to the iteratively 10 

coupled ocean run at year 2000. In other words, the iterative coupling procedure achieved a climate 

state that was similar to that of an ordinary coupled run, with roughly twice the number of model years 

needed to reach the same state. This approximately cancels out the computational speed-up achieved by 

the decoupling procedure. We therefore abandoned the iterative coupling procedure after 6 cycles and 

completed the spinup in coupled mode.  15 

 

The spinup evolution of ocean temperature across the three levels of CO2 is shown in Figure 2. The 

simulations all have surface climates in quasi-equilibrium, though the deep ocean is gradually cooling in 

all cases. All simulations have a temperature trend of less than 0.1°C per century at 4000 m, though the 

warmer climates are trending more slowly than the colder ones. This is because the initial conditions are 20 

designed to be warmer rather than colder than equilibrium, so that convection can readily occur due to 

surface cooling. The step changes in SST over the first 3300 years are due to the coupling/decoupling 

procedure described above. We also examined the evolution of the meridional overturning circulation 

during spinup, and found that both the preferred sinking regions and the magnitude of overturning were 

steady over the last ~2000 years. 25 
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3 Climate and Ocean Circulation  

The late Eocene paleogeography incorporates changes that affect important features of the ocean 

circulation compared with the present day. The Southern Ocean gateways of Drake Passage and the 

Tasman Seaway are narrow and shallow (sill depths of around 500 m), and permit a weak eastward 

circumpolar flow. Panama Seaway is open, and allows a shallow connection of surface water between 5 

the equatorial Atlantic and Pacific Oceans. The Bering Strait is closed, so that the North Pacific has no 

direct connection with the Arctic Ocean. The Arctic Ocean is connected to the North Atlantic by narrow 

and shallow seaways (up to 200 m depth), which allow export of freshwater from the Arctic into the 

Atlantic. Transport between the Arctic and Atlantic is bidirectional, with surface waters travelling 

predominantly southwards, and waters below 100 m travelling predominantly northwards. The Tethys 10 

Ocean has connections to the Indian and the Atlantic, and a very narrow and shallow connection via 

Turgai Strait to the Arctic (25 m depth), allowing unidirectional southward transport of surface waters. 

Apart from these gateway changes, the Pacific is wider and more open through the Indonesian 

Archipelago, while Australia is further South. The Atlantic is similarly narrower especially in the 

Northern Hemisphere, and in this region the subpolar gyre is particularly constricted. These features all 15 

contribute to a vastly different ocean circulation than present day, and we explore the major changes 

below.  

3.1 Surface Climate 

In this section, we describe the control climate (800 ppm), key features of the circulation and how they 

compare with proxy evidence. Figure 3a and Figure 3b show the sea surface temperature (SST) and 20 

surface air temperature (SAT) respectively. Equatorial SSTs reach as high as 38°C in the western 

Pacific warm pool, with tropical temperatures around 30-35°C elsewhere. The warm pool extends west 

into the Indian Ocean due to an open Indonesian Seaway. The meridional temperature gradient is a little 

lower than in the modern climate, with the high latitude SSTs of the North Pacific and Southern Ocean 

being around 15-20°C, even along the coast of Antarctica.  25 
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The sea surface salinity (Figure 3c) indicates very fresh conditions in the Arctic Ocean, around 20 psu. 

The fresh Arctic surface waters flow out primarily into the North Atlantic, where the surface salinities 

around Greenland and above ~45°N are generally below 30 psu. Under these conditions deep sinking 

cannot occur in the North Atlantic. On the other hand, the high latitude North Pacific surface water is 

mostly around 35 psu, apart from a limited region in the north-east where there is strong runoff entering 5 

the ocean from the North American mountain ranges. Under modern conditions the orography, via its 

influences on atmospheric circulation and drainage pathways, forces the surface water in the North 

Pacific to be fresher than in the North Atlantic (Maffre et al., 2017; Sinha et al., 2012; Wills and 

Schneider, 2015). Notably, the low surface salinities prevent deep water formation in the present-day 

North Pacific (Warren, 1983). However, our control simulation shows a higher river runoff (0.28 Sv) 10 

going into the Arctic than the North Atlantic (0.14 Sv) and North Pacific (0.15 Sv) (here the cutoff 

latitude is chosen to be 45°N). The same comparison with a simulation of CM2.1 in its modern 

configuration produces a river runoff of 0.10 Sv into the Arctic, only slightly higher than North Atlantic 

of 0.07 Sv and North Pacific of 0.08 Sv. This high Arctic runoff, combined with enhanced P-E forcing 

of the warm climate creates the very fresh Arctic surface waters. Transport of this fresh Arctic water 15 

mass into the North Atlantic causes a state reminiscent of the present day North Pacific with low surface 

salinity, a strong halocline and no deep water formation. 

 

Zonal wind stress (Figure 3e) in the Southern Ocean has a more zonal structure than in the present day, 

with a weaker standing wave meander and a lower magnitude overall. The wind stress peak sits around 20 

50°S, similar to present day, and the wind stress curl drives subtropical gyre circulations in the South 

Pacific and Indian Oceans analogous to the present day, as shown in the barotropic streamfunction of 

Figure 3f. The Southern Ocean gateways — Drake Passage and the Tasman Seaway — are open, but 

they are narrow and shallow and thus allow only a weak circumpolar flow around Antarctica of 15 Sv. 

 25 

The mean state of the model has an east-west temperature contrast across the equatorial Pacific in 

excess of 6°C, slightly stronger than in the present day, suggesting a more La Niña-like mean state. 

Empirical orthogonal function (EOF) analysis of global SST indicates strongest variability in the central 
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equatorial Pacific (Figure 4a), while precipitation varies most strongly in a dipole spanning the western 

equatorial Pacific and Indian oceans (Figure 4b). Using the first EOF of SST, we define an ‘El Niño 

Index’ region between 170°E and 140°W, and 5°S to 5°N, as being representative of highest Pacific 

equatorial SST variability. This index is analogous to the present-day Niño-3.4 index, designed to 

bracket the region of highest El Niño-Southern Oscillation (ENSO) variability. This index indicates the 5 

occurrence of multi-year El Niño and La Niña events (Figure 4c), defined by a threshold of +0.5°C for 

an El Niño and -0.5°C for a La Niña, as used in present day. The magnitude of temperature deviations is 

generally weaker than present day Niño-3.4 variability. The east-west SST gradient in the equatorial 

Pacific is closely anti-correlated with the El Niño index, with a reduction in east-west gradient during El 

Niño and vice versa for La Niña (Figure 4d). However, the magnitude of these variations is also weaker 10 

than present day, suggesting that our model has a more robust western Pacific warm pool than present 

day. We suggest this reduction in El Niño variability is due to the widening of the Pacific basin and the 

relative absence of continental barriers such as New Guinea and Indonesia, which are further separated 

in the late Eocene and create a more permanent and stronger warm pool. This result agrees broadly with 

von der Heydt and Dijkstra (2006), who also found a stronger western Pacific warm pool in an 15 

Oligocene model simulation. 

 

The ‘Weddell Sea’ equivalent in the EOT model, where deep water forms in the model, has annual 

mean sea surface temperature below 10°C and develops a small area of seasonal sea ice close to the 

coast. The Arctic Ocean temperatures are typically around 4-6°C, and it is mostly ice free all year 20 

round, apart from some embayments around the Siberian coast. The average maximum monthly sea ice 

thickness for each hemisphere is plotted in Figure 5, showing September thickness for the Northern 

Hemisphere and March thickness for the Southern Hemisphere. We note that there is evidence of ice-

rafted debris in the Arctic from the middle Eocene onwards (Stickley et al., 2009), indicating the likely 

presence of seasonal sea ice at this time. Our 400 ppm simulation has Arctic-wide sea ice in summer 25 

(Figure 5b), suggesting that the model’s sea ice is more accurate at a lower level of CO2.  
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3.2 Meridional Overturning Circulation 

The meridional overturning circulation (Figure 6) shows a structure of sinking in the North Pacific and 

Southern Ocean. There is no deep overturning cell in the North Atlantic, due to the surface waters being 

far too fresh to allow for local deep water formation. The structure of the Pacific overturning is 

analogous to modern day North Atlantic Deep Water formation: the Northern Component Water is 5 

warmer and saltier than the Southern Component water and is heavier at the surface. This difference in 

deep water properties is caused by colder winter temperatures in the Southern Ocean sinking regions 

than the North Pacific, since deep water forms exclusively in winter. The colder winter temperatures are 

due to the asymmetry of landmasses between the poles. One factor is that the Southern Ocean extends 

further poleward than the North Pacific (in both Pacific and Atlantic sectors). Furthermore, the 10 

Antarctic continental interior becomes colder in winter than the Arctic Ocean, and therefore the 

seasonal cycle in high latitude (>60°) surface air temperature is stronger in the Southern Hemisphere. 

The Northern Hemisphere also has very cold winters in continental interiors, but its polar winters are 

moderated by the presence of an ocean and its seasonal cycle is milder. 

 15 

As in modern climate, thermobaric effects control the layering of the abyssal ocean (Nycander et al., 

2015). The Southern Hemisphere sourced deep waters are colder and therefore more compressible than 

the warmer and slightly more saline ones sourced from the Northern Hemisphere. Thus bottom waters 

are predominantly formed in the Southern Ocean. Sinking occurs in both the Pacific and Atlantic 

sectors of the Southern Ocean, as indicated by the age tracer at 2000 m and winter mixed layer depths 20 

(Figure 7). Both of these sectors contribute to bottom water formation, as can be seen from the age 

tracer distribution. The shallow gateways through Drake Passage and Tasman Seaway provide barriers 

that prevent Pacific- and Atlantic-sourced bottom waters from directly penetrating into the opposite 

ocean basin. The poleward heat transport is similar to modern (not shown), with the partition between 

ocean and atmosphere heat transport being dominated by the ocean in the tropics only, and by the 25 

atmosphere in the mid- to high- latitudes. As in the modern ocean, poleward heat transport is skewed 

towards the Northern Hemisphere, with a peak value of 2.2 PW (northward) and a minimum value 

of -0.9 PW in the Southern Hemisphere. We suggest that this asymmetry is due to the analogous 
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asymmetry of deep water formation; i.e. a warmer and saltier northern cell tends to enhance northward 

ocean heat transport relative to the colder and fresher southern overturning cell. In the tropics, we do not 

find deep water formation due to warm, salty water masses such as in the Tethys. 

 

We also compare the results of our control run with the widely-used Bryan-Lewis mixing scheme, as 5 

used in the default case of CM2.1 (Delworth et al., 2006). The shape of the Bryan-Lewis mixing scheme 

is designed to reflect the modern distribution of mixing rates, in turn shaped by modern geography. 

Major changes to the bathymetry were expected to alter the deep ocean mixing distribution due to 

intensified mixing over ridges and rough topography, while large changes to surface radiative forcing 

may were expected to alter the thermocline structure. However, we find that the meridional overturning 10 

circulation and stratification are largely insensitive to this change in vertical mixing. The magnitude of 

the overturning, distribution of sinking regions and age tracer were all very similar between the mixing 

schemes (not shown). This was a surprising result, given theoretical predictions of change due to 

roughness mixing (de Boer and Hogg, 2014). We do find that the abyssal ocean is slightly cooler in the 

bottom roughness mixing scheme (0.5°C), suggesting a larger separation between the upper cell and the 15 

lower cell, in line with theoretical predictions. We also find abyssal salinity differences on the order of 

0.1 psu. Given the very long spinup time of the simulations, the lack of divergence between the schemes 

is surprising. In the Arctic Ocean, the differences in deep ocean temperature and salinity are greater. 

This is because the deep waters in the Arctic are very stably stratified by the halocline and can only 

communicate with the surface diffusively.  20 

3.3 Comparison with Proxy Data 

A comparison of proxy data with the model SSTs for the 400, 800 and 1600 ppm experiments is shown 

in Figure 8. The proxy data are taken from the late Eocene compilation of Liu et al. (2009), and include 

Uk’
37 data, TEX86 and Mg/Ca from a time window of 34-37 Ma for the pre-EOT. Two additional data 

points are added: (i) TEX86 data from ODP site 1172 (Bijl et al. 2009), from a time window of 36.5 to 25 

38.5 Ma; and (ii) TEX86 data the Tanzania Drilling Program (Pearson et al., 2007), averaged across two 

late Eocene time points of 33.8 Ma and 39.6 Ma. The paleolocations of these proxies were determined 
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using GPlates, reconstructed to an age of 38 Ma using the Paleomagnetic reference frame of Torsvik et 

al. (2012) and van Hinsbergen et al. (2015). This ensures consistency with the model boundary 

conditions (Baatsen et al., 2016). 

 

Figure 8 shows the proxy data points compared with the nearest model ocean point, and the model zonal 5 

mean temperature. The 1600 and 800 ppm cases are too warm compared with the proxies in the tropics. 

In the control case (800 ppm) the model is roughly 3°C warmer at the equator. However, the TEX86 data 

from Tanzania (~32°C) of Pearson et al. (2007) agree better with the control case. In the mid to high 

latitudes, the control case is colder than the proxy estimates. The 1600 ppm case agrees better with the 

mid to high latitude proxy estimates, however its warm bias at the equator is very large. In the 400 ppm 10 

simulation, the tropical temperatures agree well with the proxies, while in the mid-latitudes, it is too 

cold.  

 

The model’s inability to capture the low meridional temperature gradient in the proxies is a common 

problem in simulating warm climates of the Eocene (Huber and Caballero, 2011). However, several 15 

apsects of the proxy data could help to improve this situation. First, alternative calibrations of the TEX86 

data from Tanzania may yield temperatures as high as 35°C in the late Eocene (Bijl et al., 2009), which 

would reduce the low gradient problem. We also note that there are no available late Eocene proxy 

estimates in the western Pacific warm pool, where the ocean’s warmest temperatures are found. Second, 

high latitude TEX86 data may be affected by summer bias due to seasonal growth of its underlying 20 

species (Kim et al., 2010), which may have the effect of reducing the meridional temperature gradient 

seen in the proxies. 

4 Climate Sensitivity to CO2  

4.1 Temperature Response 

The global mean SST in the control run (800 ppm) is 27.8°C; halving CO2 to 400 ppm produces 3.5°C 25 

of cooling, and doubling CO2 to 1600 ppm yields 4.2°C of warming. The global mean SAT in the 

Clim. Past Discuss., https://doi.org/10.5194/cp-2017-161
Manuscript under review for journal Clim. Past
Discussion started: 9 January 2018
c© Author(s) 2018. CC BY 4.0 License.



16 
 

control is 25.6°C; halving CO2 to 400 ppm produces 4.0°C of cooling, and doubling produces 4.8°C of 

warming. The higher sensitivity of temperature change in the atmosphere is due to both stronger polar 

amplification in the atmosphere than the ocean; and a stronger temperature change over land than over 

the ocean. In its modern configuration, CM2.1 has an equilibrium sensitivity of 3.4°C (Winton et al., 

2010). The lower sensitivity in the modern case may be due to many factors, for example higher albedo 5 

due to the presence of ice sheets, and the higher percentage of land versus ocean. Furthermore, our 

simulations indicate some state dependence, with higher sensitivity at higher CO2. 

 

The response of SST and SAT to CO2 changes is shown in Figure 9. In the 1600 ppm case (Figure 9a,c), 

the tropics warm by between 3-4°C, with a strong amplification in both of the polar regions. SAT over 10 

the Arctic Ocean and over Antarctica are 7-9°C warmer, with the magnitude of polar amplification 

being similar in both hemispheres. This approximate doubling of warming in the polar regions aligns 

with expectations from idealised climate modelling of the polar amplification response (Alexeev et al., 

2005). The polar amplification is a combination of the local radiative forcing and the enhanced moist 

energy transport from the tropics. The Arctic Ocean warming is especially pronounced in the 1600 ppm 15 

case, despite the absence of ice-albedo feedbacks. We suggest that the ice-free conditions allow for 

substantial radiative warming of SST in addition to atmospheric polar amplification. Warming over land 

shows a mixed response; warming over North America and Siberia is enhanced compared with oceanic 

regions at the same latitude, as is the case in southern Africa. By contrast, other regions such as 

Australia, equatorial Africa and parts of South America show little change to the land-ocean contrast. 20 

This is linked directly with the land-ocean monsoon response in low to mid-latitudes. Regions of 

enhanced land warming are closely associated with enhanced drying, while regions of reduced land 

warming generally also become wetter, as shown in the P-E forcing (Figure 10). In the higher latitudes, 

the monsoonal forcing is weaker, and thus the P-E changes are not as closely linked with the 

temperature response. 25 

 

In the 400 ppm case (Figure 9b,d), the magnitude of tropical cooling and polar amplification are 

similarly strong as in the warming case. The Antarctic SAT response is however somewhat stronger 

Clim. Past Discuss., https://doi.org/10.5194/cp-2017-161
Manuscript under review for journal Clim. Past
Discussion started: 9 January 2018
c© Author(s) 2018. CC BY 4.0 License.



17 
 

than the warming case due to the triggering of snow albedo feedbacks. Under 400 ppm, a far greater 

proportion of the Antarctic continent is covered in snow in winter. The model does not sustain freezing 

temperatures over Antarctica in summer. However, this should not be interpreted directly as evidence 

that an ice sheet cannot be triggered under this climate; the model lacks the necessary feedbacks to 

simulate the accumulation of long term snow and ice (e.g. Gasson et al. 2014). One area of strong 5 

cooling occurs in the Weddell Sea, where SSTs drop by ~8°C, with a commensurate change in SAT. 

There is also a cessation of deep water formation in this region, and the formation of seasonal sea ice in 

the 400 ppm case (see Figure 5). The Pacific sector of the Southern Ocean cools to a similar magnitude 

as the warming case. The SST cooling in the Arctic is less pronounced than in the warming case, simply 

because the sea surface freezes for much of the year and therefore the surface change is limited to ~4°C. 10 

The SAT response in the Arctic is similarly strong, showing that the atmosphere polar amplification can 

be much stronger than the Arctic SST change. 

4.2 Salinity and Hydrological Cycle 

In response to a doubling of CO2 to 1600 ppm, surface salinity decreases markedly over the mid and 

high northern latitudes as shown in Figure 10a. Arctic Ocean salinities decrease by around 1 psu, due to 15 

the enhancement of the high latitude precipitation and river runoff into the Arctic. The river runoff 

accumulates from North America, Europe and Siberia, so the net effect of the increased P-E (Figure 

10c) on the salinity is particularly concentrated in the Arctic. This Arctic freshening also has a marked 

impact on North Atlantic salinity. Conversely when CO2 is halved, Arctic salinities are enhanced by 1-2 

psu, due to the weakening of precipitation and runoff into the Arctic.  20 

 

Salinity changes in other regions also reflect changes in the P-E balance to a lesser extent. The north-

east Pacific freshens in response to warming and becomes saltier in response to cooling, due to the same 

forcing mechanisms. The interiors of the gyre circulations in the Pacific show signatures of the P-E 

forcing, but the salinity differences are not as clearly correlated here, due to advection and lateral 25 

mixing altering the signal. One area of notable increase in salinity under the warming scenario is the 

southern tropical Pacific, where salinity is greatly enhanced. This corresponds to an area of net drying 
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in the P-E fields, but other regions do not show nearly the same salinity response to the same magnitude 

of forcing. Clearly advection feedbacks are at play, as evidenced also by the net freshening of the South 

Atlantic in the 1600 ppm case. This occurs despite a net decrease in P-E over the subtropical South 

Atlantic gyre. One possible explanation is the enhanced African monsoon, which leads to large river 

runoff increases from West Africa into the Atlantic. Furthermore, sinking in the Atlantic sector of the 5 

Southern Ocean decreases markedly in the 1600 ppm case, which is evident in both the mixed layer 

depths and age tracers at intermediate depth (not shown). This reduction in deep water formation in turn 

reduces the salt advection into the Weddell Sea, leading to freshening at the surface. In the 400 ppm 

case, the tropical South Atlantic becomes saltier, which is likely due to a decrease in river runoff from 

West Africa. However, the Weddell Sea becomes fresher in this case, due to a reduction of sinking in 10 

the South Atlantic and its associated salt advection. 

 

Greenhouse warming enhances the hydrological cycle, due to the increased capacity of the atmosphere 

to hold water vapour. This effect is known as the Clausius-Clayperon relation. In the zonal mean, this 

effect has been shown to create a pattern of change where wet regions get wetter and dry regions get 15 

drier. A simple scaling relation can be derived that relates the change (denoted by d) in Precipitation 

minus Evaporation (P – E) to its original distribution (Held and Soden, 2006): 

d(P – E) = a dT (P - E),  

where a is a constant and dT is the change in temperature. This scaling relation has been shown to hold 

true over ocean regions in modern observations (Durack et al., 2012), but not over land where the 20 

dynamics of rainfall distribution are more complex (Greve et al., 2014). In line with the above scaling 

argument, the oceanic patterns of wet vs dry regions (Figure 3d) are enhanced in most ocean regions 

when CO2 is doubled. The equatorial response of P-E has some exceptions to the scaling relation, as the 

western Pacific warm pool and equatorial cold tongue do not respond according to the same paradigm. 

However, we note that the equatorial Pacific is subject to a strong zonal asymmetry due to El Nino 25 

variability, and these patterns do not follow the scaling relation as cleanly as the latitudinal relationship 

even in modern climate models (Held and Soden, 2006). 
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The basin integrated forcing of P-E and river runoff upon the surface ocean is summarised in Figure 11. 

This illustrates the combined effects of P-E forcing and river runoff in creating much fresher Arctic 

conditions compared to present day. In comparing the control run (800 ppm) with the 1600 ppm and 

400 ppm cases, the warmer simulations give rise to increased freshwater forcing in the North Pacific to 

a similar degree as in the Arctic. However, the Arctic Ocean has a much smaller surface area and 5 

restricted outflow and therefore the impacts on surface salinity of this forcing are strongest. The 

connection of Arctic surface waters into the Atlantic gives rise to clear salinity changes in the North 

Atlantic, whereas the North Pacific salinity is less impacted by this change. Furthermore, the freshwater 

forcing is concentrated in the north-east of the basin, away from the deep water formation region in the 

north-west. Thus the North Pacific is able to maintain deep water formation despite the enhanced 10 

freshwater forcing. 

 

Overall, these changes in salinity are not enough to alter the preferred regions of northern sinking. The 

paleogeography employed here robustly generates sinking in the North Pacific and in the Southern 

Ocean. In all cases, the northern cell is warmer and saltier, and the southern cell is colder and fresher 15 

and thus is heavier in the abyss, as in the present day. The cooling-induced weakening of the 

hydrological cycle does bring the North Atlantic closer to a regime of deep water formation, but these 

changes of 1-2 psu are not enough to trigger sinking. If we hypothesise that NADW did form at the 

EOT (Borrelli et al., 2014), then other mechanisms are needed to first raise the control state salinities in 

the North Atlantic.  20 

4.3 Meridional Overturning Circulation Response  

Meridional overturning circulation is weaker in the 1600 ppm case, by around 10 Sv in the northern 

cell, and up to 15 Sv in the southern cell (Figure 12a). Although this is a substantial reduction, the 

overall structure remains similar to that seen in the control run (Figure 6), with sinking in the North 

Pacific and Southern Ocean, albeit with a lower magnitude. The reduction in magnitude may be partly 25 

due to the lower CO2 runs being further from equilibrium, and therefore the deep ocean is expelling 

more heat. Otherwise, the high CO2 case has a lower meridional temperature gradient, which may 

Clim. Past Discuss., https://doi.org/10.5194/cp-2017-161
Manuscript under review for journal Clim. Past
Discussion started: 9 January 2018
c© Author(s) 2018. CC BY 4.0 License.



20 
 

reduce the forcing of the MOC. In the 400 ppm case, the overall magnitude of the MOC is similar in 

magnitude to the control, however there is a northward shift of the southern cell, which manifests as a 

positive change in the high southern latitudes in Figure 12b. As the climate cools, a stable halocline 

develops in the Weddell Sea which ceases to form deep/bottom water. In winter, however, the halocline 

supports the growth of seasonal sea ice in the region. Vigorous sinking occurs in the South Pacific in all 5 

cases, analogous to Ross Sea convection in the present day. This area is more predisposed to sinking 

due to a relative lack of river runoff ending up in that region, while the strong subpolar gyre circulation 

allows lower latitude water to maintain a salt feedback into the region.  

4.4 Comparison with Biome Threshold 

In order to investigate the implications of the climate sensitivity on vegetation, we have derived a model 10 

estimate of the palm/cycad line (Figure 13), which marks the coldest point where palms and cycad can 

survive. The palm/cycad line is a key indicator of the low seasonality during the Eocene, since it  proves 

that frost-intolerant flora were able to exist at high latitudes (Huber and Caballero, 2011). Its associated 

equatorward movement indicates cooling and increased seasonality leading into the Oligocene (Eldrett 

et al., 2009). Palm species have been estimated to require a cold month mean temperature (CMMT) of > 15 

5°C, and a mean annual temperature (MAT) of > 10°C (Greenwood and Wing, 1995). In the control run 

(800 ppm), The MAT > 10°C threshold allows palms to exist as far north as 60°N across most 

longitudes. This includes the southern tip of Greenland, most of Europe and North America, while 

Siberia remains mostly too cold. The CMMT > 5°C criterion however is more restrictive, with the 

cutoff moving further closer to 50°N at most longitudes. Nevertheless, the 1600 ppm simulation is 20 

warm enough to allow palms to exist far into the Arctic Circle, with the only exceptions being the 

interiors of Siberia and Greenland. In the Southern Hemisphere, Antarctica is virtually uninhabitable for 

palms due to the CMMT criterion, apart from the Antarctic Peninsula around 60-100°W. By contrast, 

all of Australia and virtually all of South America are warm enough to sustain palms even in the 400 

ppm case.  25 
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The 1600 ppm palm/cycad lines indicate that the model can sustain some of the high latitude 

megathermal climate conditions typical of the Eocene, using CO2 levels that agree with Eocene 

estimates (Anagnostou et al., 2016). We note that our model has a high sensitivity to CO2 compared 

with recent  Eocene modelling efforts (Huber and Caballero, 2011). While this helps to fit our model 

with high latitude proxy estimates, we are still faced with the conundrum of being unable to fit low 5 

latitude temperature proxies simultaneously (see Figure 8). 

5 Summary and Conclusion 

This work presents a new configuration of the GFDL CM2.1 climate model, configured for the late 

Eocene. To our knowledge, the ~1° ocean resolution is the highest ocean resolution in a coupled model 

of the late Eocene to date, while the lower resolution atmosphere ensures computational efficiency for 10 

long timescale simulations. This represents a significant step forward in resolution and accuracy in the 

representation of late Eocene paleogeography. Under this configuration, important gateways known to 

impact the ocean circulation at the EOT are better represented than has been done previously. The 

model shows relatively high sensitivity to CO2 forcing, and a warm control climate under 800 ppm CO2. 

The model shows some agreement with SST proxies, although the model still does not capture the very 15 

low gradients from equator to pole implied by the available proxy records. 

 

The model exhibits El Niño-like variability in the equatorial Pacific, though the western Pacific warm 

pool is larger and more persistent than present day. This creates a La Niña-like background state and 

more robust east-west temperature difference. There are still major uncertainties and areas for future 20 

improvement in the model. These include possible improvements to the aerosols, vegetation, soil and 

river runoff schemes, which have been configured based on an opportunistic adaptation of available 

data. The sensitivity of these schemes has not been explored here, and may provide avenues for future 

improvement. For example, the contribution of land albedo, itself a function of vegetation and soil 

properties, may have important impacts on both the land temperatures and the global meridional 25 

temperature gradient.  
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We find that the model robustly exhibits sinking in the North Pacific and the Southern Ocean, under all 

levels of CO2. The southern water mass is colder and fresher and dominates the abyssal ocean, while the 

northern deep water mass is warmer and saltier, analogous to the present-day structure of North Atlantic 

Deep Water overlying Antarctic Bottom Water. The model is configured with a bottom roughness 

mixing scheme and a uniform background diffusivity. Sensitivity tests indicate that using a Bryan-5 

Lewis diffusivity scheme, commonly used in paleoclimate models, yields largely the same stratification 

and sinking regions. The Arctic Ocean is very fresh, with typical surface salinities of 20 psu, in 

agreement with Eocene salinity proxies. The connection between this freshwater mass and the North 

Atlantic prohibits the formation of North Atlantic Deep Water, even in the absence of tectonic barriers 

in the Nordic Seas, since North Atlantic salinities are around 25-30 psu in present day sinking regions. 10 

These results highlight the importance of using late Eocene paleogeography in modelling the EOT. 

Using present day geography as a control state would not capture the dramatic differences in salinity in 

the northern ocean basins from the present day, which in turn greatly alter the preferred regions of 

sinking. 

 15 

In response to CO2 forcing, North Atlantic salinity responds clearly to a strengthening of the 

hydrological cycle under warming, and weakening under cooling. The net effect is a decrease of 1 psu 

in the North Atlantic for a doubling of CO2, and an increase of 1-2 psu for a halving of CO2. This effect 

is not enough to trigger North Atlantic sinking in the model. But it does suggest that if the climate were 

closer to a North Atlantic sinking regime at the EOT due to factors not captured here, CO2 cooling 20 

could provide a trigger. This model provides a platform for further sensitivity studies in altering aspects 

of the paleogeography. Changes to the Southern Ocean gateways, Arctic gateways, and the imposition 

of an ice sheet have all been shown to have significant impacts on the ocean circulation and climate in 

previous modelling studies. It is important to investigate such changes in a paleoclimate model with an 

accurate representation of late Eocene paleogeography, so that changes across the EOT can be 25 

referenced to circulation, temperature and salinity characteristics that are appropriate to that time period. 
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Figure 1: Bathymetry and topography of the late Eocene, adapted from (Baatsen et al., 2016). Both figures are plotted using a cell 
fill method, illustrating the resolution of the grid cells in each case. Due to the difference in resolution between the ocean and 
atmosphere, coastal grid cells in the atmosphere typically contain a fraction of both land and ocean. 
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Figure 2: Spinup evolution of the 400, 800 and 1600 ppm simulations, showing the global mean temperature evolution at (a) the 
surface, (b) 2000 m, (c) 4000 m and (d) the time rate of change at 4000 m. (d) is filtered using a 9-year running mean.  
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Figure 3: Control climate state for our 38 Ma model, showing (a) sea surface temperature (SST), (b) surface air temperature 
(SAT), (c) sea surface salinity (SSS), (d) evaporation minus precipitation, (e) barotropic streamfunction and (f) zonal wind stress.  
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Figure 4: (a) 1st Empirical Orthogonal Function (EOF1) of monthly sea surface temperature anomaly (SST), and (b) precipitation. 
From the EOF1 of SST we then define an El Niño index region from 170°E to 140°W, and from 5°S to 5°N, as shown in the green 
box in (a). This region was chosen as an ‘El Niño index’ to be representative of strongest variability in Pacific SST. (c) El Niño 
index variability in monthly SST anomaly. (d) Annual mean east-west Pacific SST difference. 5 
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Figure 5: March (NH maximum) sea ice thickness of (a) the 800 ppm run, and (b) the 400 ppm run, and September (SH 
maximum) sea ice thickness for the (c) 800 ppm run and the (d) 400 ppm run. The 1600 ppm run is sea ice free all year.  
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Figure 6: (a) Global Meridional Overturning Circulation (MOC), with the northern hemisphere MOC split into (b) Pacific basin 
and (c) Atlantic basin.  
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Figure 7: (a) Age tracer at 2000 m depth and (b) mixed layer depth. Note that the age scale is saturated in the Arctic, where the 
strong halocline prevents ventilation and ages are greater than 3000 years.  
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Figure 8: Comparison of model 1600 ppm (red), 800 ppm (orange) and 400 ppm (green) simulations with a compilation of SST 
proxy data (black circles), combining UK’37 , TEX86 and Mg/Ca data (Bijl et al., 2009; Liu et al., 2009; Pearson et al., 2007). The 
model temperature for each proxy location is shown by the coloured circles. The zonal mean and standard deviation are shown by 
the solid lines and shaded areas respectively. Also shown in blue is an equivalent distribution of zonal mean and standard 5 
deviation from the modern World Ocean Atlas (Locarnini et al., 2013). 
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Figure 9: Sea surface temperature (SST) response to (a) doubling and (b) halving CO2, and surface air temperature response 
(SAT) to (c) doubling and (d) halving CO2.  
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Figure 10: Salinity changes in response to (a) doubling and (b) halving CO2, with the corresponding changes in evaporation minus 
precipitation for (c) doubling and (d) halving CO2. Note the non-linear scale in plots (c-d). 
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Figure 11: (a) Precipitation – evaporation into the North Pacific and North Atlantic (both with a cutoff latitude of 45°N) and the 
Arctic Ocean, comparing a modern CM2.1 simulation with the late Eocene model at 400, 800 and 1600 ppm. (b) shows river runoff 
with the same breakdown as in (a), while (c) shows the total of precipitation – evaporation plus runoff. 
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Figure 12: Difference in global MOC in response to (a) doubling and (b) halving CO2.  
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Figure 13: Minimum temperature thresholds for the palm/cycad line, showing (a) cold month mean temperature (CMMT) 
contours of 5°C and (b) mean annual temperature (MAT) of 10°C.  
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